Perturbation of synaptic vesicle delivery during neurotransmitter release triggered independently of calcium influx.
نویسندگان
چکیده
Although much evidence suggests that calcium (Ca(2+)) usually triggers synaptic vesicle exocytosis and neurotransmitter release, the role of Ca(2+) in vesicle endocytosis and in the delivery of fusion-competent vesicles (i.e. mobilisation and/or priming) in nerve terminals remains unclear. To address this issue, we have studied synaptic vesicle dynamics in cultured rat neurones under conditions where neurotransmitter release is triggered independently of Ca(2+) using the secretagogue Ruthenium Red (RR). Using a prolonged stimulation protocol, we find that RR causes a rapid increase in neurotransmitter release followed by a gradually decrementing response. In contrast, when release is triggered by moderate membrane depolarisation caused by saline containing 18 mM K(+), release is sustained. These observations suggest that when release is triggered independently of a rise in Ca(2+), endocytosis or vesicle mobilisation/priming are perturbed. Using FM2-10, a fluorescent indicator of synaptic vesicle cycling, we find that neurotransmitter release triggered by RR is accompanied by both uptake and release of this dye, thereby suggesting that vesicle endocytosis is not blocked. To evaluate whether synaptic vesicle mobilisation/priming is perturbed in the absence of a rise in Ca(2+), we compared the kinetics of FM2-10 loss during prolonged stimulation. While 18 mM K(+) induced gradual and continuous dye loss, RR only induced substantial dye loss during the first minute of stimulation. In the presence of low concentrations of the Ca(2+) ionophore ionomycin, release caused by RR was prolonged. Taken together, these results provide evidence suggesting that, although a rise in intraterminal Ca(2+) is not required for endocytosis, it is essential for the continuous delivery of fusion-competent vesicles and to maintain neurotransmitter release during prolonged stimulation.
منابع مشابه
Controversies in synaptic vesicle exocytosis.
At the heart of synaptic transmission resides the synaptic vesicle cycle – a membrane trafficking pathway in which small membrane-bound vesicles mediate the release of neurotransmitter from presynaptic terminals. The cycle resembles general membrane trafficking and has three phases: vesicle filling, release and recycling. During filling, neurotransmitter is loaded into vesicles via vesicular ne...
متن کاملFunctional roles of complexin in neurotransmitter release at ribbon synapses of mouse retinal bipolar neurons.
Ribbon synapses of photoreceptor cells and bipolar neurons in the retina signal graded changes in light intensity via sustained release of neurotransmitter. One molecular specialization of retinal ribbon synapses is the expression of complexin protein subtypes Cplx3 and Cplx4, whereas conventional synapses express Cplx1 and Cplx2. Because complexins bind to the molecular machinery for synaptic ...
متن کاملA temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila.
Neurotransmission at chemical synapses involves regulated exocytosis of neurotransmitter from the presynaptic terminal. Neurotransmitter release is thought to be triggered by calcium influx through specific classes of voltage-gated calcium channels. Here we report genetic and functional analysis implicating a specific calcium channel gene product in neurotransmitter release. We have isolated a ...
متن کاملLocalized sphingolipid signaling at presynaptic terminals is regulated by calcium influx and promotes recruitment of priming factors.
Activity-dependent changes in presynaptic function represent a critical mechanism by which synaptic strength is controlled. However, how changes in synaptic activity couple to presynaptic components to control synaptic vesicle release and recycling are poorly understood. Sphingosine kinase (SphK) is a sphingolipid metabolic enzyme whose activity-dependent recruitment to membrane regions within ...
متن کاملHomeostatic synaptic plasticity through changes in presynaptic calcium influx.
Chronic perturbations of electrical activity within neural circuits lead to compensatory changes in synaptic strength collectively termed homeostatic synaptic plasticity. The postsynaptic mechanisms underlying these modifications have been characterized in some detail, but the presynaptic mechanisms that alter the efficiency of evoked neurotransmitter release are less clear. To investigate the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 542 Pt 3 شماره
صفحات -
تاریخ انتشار 2002